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Abstract: During the manufacture process of a composite and after this, during the use of the material, there 
exists many way in which the real material can have differences in comparison with the theoretical 
composite considered as a succession of a repeating cell. Sometime these differences can be great enough 
and they can have a major influence on the properties of the composite. In the paper we try to present haw 
these differences can influence the elastic constants of a such material. The resulting behavior of the 
material will determine what kind of material will be choose to correspond for an particular state of stresses. 
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1. Introduction 
 

In the paper the authors have continued to study 
the formulas for the elastic mechanical constants 
made in some previous papers [1], [4], [5]. The 
values obtained will be very important when is 
necessary to identify the best material for a practical 
purpose. For this reason the authors have used the 
results obtained in the mentioned papers and in other 
papers that have the same subject [2], [3], [6], [7]. 
The results are presented in a graphical manner in 
order to be more suggestible.  
 For some elastic constants a little difference 
between the theoretical value of some parameters 
can have a neglected influence but for other 
constants a little difference for a parameter can 
produce a great difference for the analyzed 
coefficient. These differences can be important in 
same applications and can determine the type of 
material choose.  
 A composite material is made by two or more 
components and he has properties that are different 

 

that of each constituent. To obtain the elastic 
constants for a such material is a very important step 
in a design process. For this reason are proposed 
some formulas, depending on the components 
fraction ratio, on the geometry of the composite 
structure, on the materials used, etc. The calculus of 
these properties and the stability of the proposed 
formulas represent a very important step when we 
want to find the best material for a practical purpose.  
 In the paper was analyzed a composite obtained 
by cylindrical and parallel fibers incorporated in a 
matrix. The results for the principal engineering 
mechanical constants used in the following are 
obtained in the paper [1]…[7].  
 It exists many formulas proposed for a single 
constant but the differences between these are not so 
great and we have used only one formula for each 
mechanical constant. The aim of the paper is not 
influenced by this choice.  
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2. The Poisson’s Ratio 

 
For the Poisson’s ratio we use the following 

relations         
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where was considered: mf mm ≥ .
Figure 1 present the Poisson’s ratio for the case 

nr. 1 characterized by the following values: the 
matrix has the Young’s modulus 0.4 MPa and the 
Poisson’s ratio 0.35; the fiber has the Young’s 
modulus 10.5 MPa and the Poisson’s ratio 0.22. For 
this case we have considered that the Young’s 
modulus of the fiber has a variation between  ± 
10%. We can see that, in this case, a little variation 
of this parameter has a neglected influence on the 
Poisson’s ratio. The Poisson’s ratio respect, well 
enough, the law of mixtures.  
 The other elastic parameter of phases have not 
essential influence. Fig. 2 present the same 
parameter for the following case: the matrix has the 
Young’s ratio 2.7 and the Poisson’s ratio 0.35 and 
the fiber has the Young’s modulus 72.4 and the 
Poisson’s ratio 0.22. 
 For the case 2 there are no practical difference 
on the Poisson’s ratio even in the situation when the 
Young’s modulus has a great variation. But, the 
other properties of the material have a strong 
dependence by the elastic mechanical constants 
 A study of the situation when the matrix has the 
Young’s modulus 0.27 show that the results are 
practical the same like for the case nr.2. 
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Fig.1. The Poisson’s ratio for a variation of  ± 10% 
of the Young’s modulus  for the case 1 

 

If we consider that there exists a variation of ± 
1% of the Young’s modulus it easy to see that there 
is practical no variation of the Poisson’s ratio. A 
graphical representation of the Poisson’s ratio in this 
case look like the Figure 2. 
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Fig.2. The Poisson’s ratio for a variation of  ± 10% 
of the Young’s modulus  for the case 2 

 
3. The Bulk Modulus 

 
The upper and lower bounds for the bulk 

modulus used in this paper are: 
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If we study the variation of the bulk modulus 
when the we have a variation of the Young’s 
modulus between ± 10% we can see that the 
variation of the obtained values are small enough. 
We can made the observation that the variation of 
the Young’s modulus in this case has a small 
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influence on the bulk modulus. Figure 3 present this 
situation. 

 
The Bulk Modulus  K23
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Fig. 3. The bulk modulus for a variation of  ± 10% 
of the Young’s fiber modulus  for the case 1 

 
If we consider only a variation of ± 1% we can 

see that, practically, the values for the bulk 
modulus, when we have small variations are the 
same (Figure 4).  
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Fig. 4 The bulk modulus for a variation of  ± 1% of 
the Young’s fiber modulus  for the case 1 

 

4. The Young’s Modulus 
 

For the Young modulus we have: 
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where: mf mm ≥ .
In this case because the Young’s modulus 

formula respect very well the law of mixture a 
variation of the modulus for the fiber offer a 
variation practical the same for the  composite. This 
conclusion is very well represented in Figure 5 and 
6.  
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Fig.5. The Young’s modulus  for a variation of  ± 
10% of the Young’s fiber modulus  for the case 1 
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Fig. 6. The Young’s modulus  for a variation of  ± 
1% of the Young’s fiber modulus  for the case 1 

 
5. The Shear Modulus 

 
The lower and the upper bounds for the shear 

modulus are obtained via the relations: 
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The shear modulus is represented in Figure 7 
when we have a variation of  ± 10% of the Young’s 
fiber modulus and in fig. 8 the same modulus when 
the variation is only of ± 1%. We can the that for 
the upper value the variation has an influence but 
for the lower value the influence can be neglected.
 

The Shear Modulus
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Fig. 7. The shear modulus  for a variation of  ± 10% 
of the Young’s fiber modulus  for the case 1 
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Fig. 8. The shear modulus  for a variation of  ± 1% 
of the Young’s fiber modulus  for the case 1 

 

6. Conclusion 
 

After an analysis of the influence of the 
variation of some parameters on the elastic constants 
we can conclude that can exists for some constants 
great variations. For this reason when we must to 
determine the values of elastic parameter for a 
composite it is very important to know the 
differences between the theoretical model of the 
material and the real shape and dimensions of this.  
 The properties in the longitudinal direction for a 
composite with aligned fibers (the Young’s modulus 
and the bulk modulus), described by formulas that 
respect well the law of mixture, have  practical the 
same variations like the variation of the Young’s 
modulus. The Poisson’s coefficient is very little 
influenced by these variation.  
 The properties in the transverse direction are 
strong influenced by the variations previously 
presented. 
 

References 
 

1. Goia, I., Modrea, A. ş.a. Calculus of the 
Mechanical Properties for the Composite 
Materials. A IX-a Conferinta internationala 
CONAT, Braşov, 1999. 

2. Hashin, Z., Rosen, W.B. The Elastic Moduli of 
Fiber-Reinforced Materials. Journal of Applied 
Mechanics, June, 1964, p. 223-232. 

3. Hill, R. Theory of Mechanical Properties of 
Fibre-Strengthened Materials: I. Elastic 
Behaviour. J. Mech. Phys. Solids, 1964, Vol.12, 
p. 199-212. 

4. Modrea, A. ş.a. Evaluation of the elastic 
parameter for a composite when the 
strain/stress  field is obtain via finite element 
method. A III-a Conferinţă de dinamica 
maşinilor, Braşov, oct.2001, p.365-370. 

5. Modrea, A. ş.a. Evalution of homogenized 
coefficients for fiber reinforced plastic. A III-a 
Conferinţă de dinamica maşinilor. Braşov, 
oct.2001, p.371-374. 

6. Mori,T., Tanaka, K. Average Stress in Matrix 
and Average Elastic Energy of Materials with 
Misfitting Inclusions. Acta Metalurgica, vol.21, 
May, 1973, p.571-574. 

7. Walpole, L.J. On the Overall Elastic Moduli of 
Composite Materials. J. Mech. Phys. Solids, 
1969, vol.17, p.235-251. 


